II Year M.Sc. (DCC) Degree Examination, January 2018 (Fresh and Repeaters) (Y2K13 Scheme)
 MATHEMATICS
 M202 : Numerical Analysis

Time : 3 Hours
Max. Marks : 80
Instructions: 1) Answerany five questions, choosing at least two from each Part.
2) All questions carry equal marks.
PART - A

1. a) Find the smallest root of the equation $f(x)=3 x-\cos x-1=0 \operatorname{correct}$ to four decimals.
b) Determine a quadratic factor of the polynomial $\mathrm{x}^{4}+\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}+1=0$ with $p_{0}=0.5=q_{0}$.
2. a) Explain the procedure of Gauss-elimination method for solving the system of equations and hence solve
$2 x_{1}+2 x_{2}+x_{3}+2 x_{4}=7$
$x_{1}-2 x_{2}-x_{4}=2$
$3 x_{1}-x_{2}-2 x_{3}-x_{4}=3$
$x_{1}-2 x_{4}=0$.
b) Find the roots of

$$
\begin{align*}
& x^{2}-y^{2}=4 \\
& x^{2}+y^{2}=16 \\
& \text { with } x_{0}=y_{0}=2 \sqrt{2} . \tag{8+8}
\end{align*}
$$

P.t.o.
3. a) With help of the following table:

\mathbf{x}	$:$	-1	0	1
$\mathbf{f (x)}$	$:$	1	1	3
$\mathbf{f}^{\prime}(\mathbf{x})$	$:$	-5	1	7

Find $f(-0.5)$ and $f(0.5)$ using the Hermite interpolation.
b) Obtain the Rational approximation $\mathrm{R}_{5,4}$ for $\mathrm{e}^{-\mathrm{x}}$.
4. a) Derive the Gauss-Legendre three point integration formula and hence evaluate $\int_{-1}^{1}\left(1-x^{2}\right)^{3 / 2} \cos x d x$.
b) Evaluate : $\int_{0}^{1} \int_{0}^{x} 4 x y d y d x$ using Simpson's $/ 3$ rule with three subintervals.

PART-B

5. a) Derive the Runge-Kutta fourth order method and hence solve $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}$, $y(0)=0$ at $x=0.2$. Take $h=0.1$.
b) Using the Runge-Kutta second order method, solve

$$
\frac{d y}{d x}=-3 y+2 z, y(0)=0
$$

$$
\begin{equation*}
\frac{d z}{d x}=3 y-4 z, z(0)=0.5 \tag{8+8}
\end{equation*}
$$

with $\mathrm{h}=0.2$. Obtain the solution at $\mathrm{x}=0.4$.
6. a) Solve the boundary value problem $y^{\prime \prime}=x y, y(0)=y^{\prime}(0)=1, y(1)=1$ with $\Delta x=\frac{1}{3}$ using finite difference method.
b) Solve the one-dimensional equation $\mathrm{U}_{\mathrm{t}}=\mathrm{U}_{\mathrm{xx}}, 0 \leq \mathrm{x} \leq 1, \mathrm{t} \geq 0$ with
$U(x, 0)=\sin 2 \pi x ; 0 \leq x \leq 1$
$U(0, t)=0=U(1, t), t \geq 0$
using Crank-Nicolson method.
Take $\Delta \mathrm{x}=\frac{1}{4}, \Delta \mathrm{k}=\frac{1}{36}$. Obtain the solution at second time level.
7. Derive the alternating direction implicit scheme applied to the two dimensional parabolic equation. Also discuss its stability issues.
8. a) Discuss the stability of the finite difference scheme applied to the onedimensional wave equation.
b) Solve the Poisson's equation $U_{x x}+U_{y y}=\sin \pi x \sin \pi y, 0 \leq x, y \leq 1$ subjected to the conditions $U=0$ on the boundary. Take $\Delta x=\Delta y=\frac{1}{3}$.

